Jensen-type inequalities for m-convex functions and applications

Yamilet Quintana, Paul Bosch, José M. Rodríguez, José M. Sigarreta
Departamento de Matemáticas, Universidad Carlos III de Madrid Instituto de Ciencias Matemáticas (ICMAT), Spain
yaquinta@math.uc3m.es

Abstract

Integral inequalities are a fundamental tool in mathematics and have countless applications in various fields. In particular, Jensen inequality, one of the most famous inequalities, plays a main role in the study of the existence and uniqueness of initial and boundary value problems for differential equations. In this work we prove some new Jensentype inequalities for m-convex functions, and apply them to generalized Riemann-Liouvilletype integral operators. Furthermore, as a remarkable consequence, some new inequalities for convex functions are obtained.

References

[1] P. Bosch, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta (2022). Jensen-type inequalities for m convex functions. Open Math., 20 (1), 946-958.
[2] A. McD. Mercer (2003). A variant of Jensen's inequality. J. Ineq. Pure Appl. Math., 4 (4), Art. 73.
[3] Z. Pavić, M. Avci Ardiç (2017). The most important inequalities of m-convex functions. Turk. J. Math., 41, 625-635.
[4] H. M. Srivastava, D. Raghavan, S. Nagarajan (2022). Generalized inequalities involving fractional operators of the Riemann-Liouville type. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 116 (3), Art. 98.
[5] G. Toader (2009). The hierarchy of convexity and some classic inequalities. J. Math. Inequal., 3 (3), Art. 03-30.

Acknowledgments: The research of Y. Quintana, J. M. Rodríguez and J. M. Sigarreta has been supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain. The research of Y. Quintana has been partially supported by the grant CEX2019-000904-S funded by MCIN/AEI/10.13039/501100011033.

